Personnel Information

写真a

ISHITANI RYUICHIRO


Job title

Professor

Campus Career 【 display / non-display

  • 2024.01
    -
    2024.09
    Tokyo Medical and Dental University, Medical Research Institute, Division of Biological Data Science, -, Professor
  • 2024.10
    -
    Now
    Institute of Science Tokyo, -, Institute of Integrated Research, Biological Data Science, Computational Drug Discovery and Design, Professor
  • 2024.10
    -
    Now
    Institute of Science Tokyo, -, Graduate Schools, Integrative Molecular Biomedicine, Computational Drug Discovery and Design, Professor
 

Research Theme 【 display / non-display

  • Development of innovative therapies targeting mitochondrial regulation by one-carbon metabolic enzyme, 2024.09 - 2027.09

  • Structural biology of membrane transporters involved in the efflux mechanism of organic molecules, 2017.04 - 2020.03

  • Elucidation of MAPK signaling pathways and biological processes based on mathematical science, 2016.06 - 2021.03

  • Molecular mechanism of membrane proteins regulated by physical stimuli, 2016.04 - 2021.03

  • Structural and functional analyses of organic acid exporters for efficient organic acid production, 2016.04 - 2019.03

  • Structural biology of multidrug transporters, 2013.04 - 2017.03

▼display all

Published Papers & Misc 【 display / non-display

  1. Ishitani, R; Takemoto, M; Tomii, K. Protein ligand binding site prediction using graph transformer neural network PLOS ONE. 2024.08; 19 (8): e0308425. ( PubMed, DOI )

  2. Molecular Design Method Using a Reversible Tree Representation of Chemical Compounds and Deep Reinforcement Learning. 2022.09; 62 (17): 4032-4048. ( PubMed, DOI )

  3. Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements. 2022.05; 13 (1): 2991. ( PubMed, DOI )

  4. Lateral access mechanism of LPA receptor probed by molecular dynamics simulation. 2022; 17 (2): e0263296. ( PubMed, DOI )

  5. Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin. 2021.03; 10 ( PubMed, DOI )

  6. Structural biology of the multidrug and toxic compound extrusion superfamily transporters. 2020.12; 1862 (12): 183154. ( PubMed, DOI )

  7. Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation. 2020.05; 3 (1): 240. ( PubMed, DOI )

  8. Identification of Potent In Vivo Autotaxin Inhibitors that Bind to Both Hydrophobic Pockets and Channels in the Catalytic Domain. 2020.03; 63 (6): 3188-3204. ( PubMed, DOI )

  9. Crystal structure of Drosophila Piwi. 2020.02; 11 (1): 858. ( PubMed, DOI )

  10. Author Correction: Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. 2020.02; 578 (7794): E19. ( PubMed, DOI )

  11. Cryo-EM structure of the human L-type amino acid transporter 1 in complex with glycoprotein CD98hc. 2019.06; 26 (6): 510-517. ( PubMed, DOI )

  12. Structural basis for oligomerization of the prokaryotic peptide transporter PepTSo2. 2019.05; 75 (Pt 5): 348-358. ( PubMed, DOI )

  13. Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9. 2019.04; 10 (1): 1968. ( PubMed, DOI )

  14. Crystal structure of plant vacuolar iron transporter VIT1. 2019.03; 5 (3): 308-315. ( PubMed, DOI )

  15. Structural Basis of H+-Dependent Conformational Change in a Bacterial MATE Transporter. 2019.02; 27 (2): 293-301. ( PubMed, DOI )

  16. Cap-specific terminal N 6-methylation of RNA by an RNA polymerase II-associated methyltransferase. 2019.01; 363 (6423): ( PubMed, DOI )

  17. Crystal structure of the Agrobacterium tumefaciens type VI effector-immunity complex. 2018.12; 74 (Pt 12): 810-816. ( PubMed, DOI )

  18. Vibrational and Molecular Properties of Mg2+ Binding and Ion Selectivity in the Magnesium Channel MgtE. 2018.10; 122 (42): 9681-9696. ( PubMed, DOI )

  19. Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1. 2018.10; 9 (1): 4424. ( PubMed, DOI )

  20. An Atomistic Model of a Precursor State of Light-Induced Channel Opening of Channelrhodopsin. 2018.10; 115 (7): 1281-1291. ( PubMed, DOI )

  21. Free Energy Landscape for the Entire Transport Cycle of Triose-Phosphate/Phosphate Translocator. 2018.09; 26 (9): 1284-1296. ( PubMed, DOI )

  22. Engineered CRISPR-Cas9 nuclease with expanded targeting space. 2018.09; 361 (6408): 1259-1262. ( PubMed, DOI )

  23. Cryo-EM structures of the human volume-regulated anion channel LRRC8. 2018.09; 25 (9): 797-804. ( PubMed, DOI )

  24. Functional roles of Mg2+ binding sites in ion-dependent gating of a Mg2+ channel, MgtE, revealed by solution NMR. 2018.04; 7 ( PubMed, DOI )

  25. Structural basis for xenobiotic extrusion by eukaryotic MATE transporter. 2017.11; 8 (1): 1633. ( PubMed, DOI )

  26. Structure of the triose-phosphate/phosphate translocator reveals the basis of substrate specificity. 2017.10; 3 (10): 825-832. ( PubMed, DOI )

  27. Structural insights into the competitive inhibition of the ATP-gated P2X receptor channel. 2017.10; 8 (1): 876. ( PubMed, DOI )

  28. Structural insights into ligand recognition by the lysophosphatidic acid receptor LPA6. 2017.08; 548 (7667): 356-360. ( PubMed, DOI )

  29. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1. 2017.08; 67 (4): 633-645. ( PubMed, DOI )

  30. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1. 2017.07; 67 (1): 139-147. ( PubMed, DOI )

  31. ATP-dependent modulation of MgtE in Mg2+ homeostasis. 2017.07; 8 (1): 148. ( PubMed, DOI )

  32. Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. 2017.06; 86 541-566. ( PubMed, DOI )

  33. Structural insights into the nucleotide base specificity of P2X receptors. 2017.03; 7 45208. ( PubMed, DOI )

  34. Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. 2017.03; 65 (6): 1109-1121. ( PubMed, DOI )

  35. Correction: Breakpoint Cluster Region-Mediated Inflammation Is Dependent on Casein Kinase II. 2017.01; 198 (2): 971. ( PubMed, DOI )

▼display all

Conference Activities & Talks 【 display / non-display

  1. Nakamura Ryoki, Kasuya Go, Takemoto Mizuki, Hattori Motoyuki, Ishitani Ryuichiro, Nureki Osamu. MDシミュレーションを用いたATP作動性イオンチャネルP2Xにおける競合的阻害剤TNP-ATPの作用機序の解明(MD simulation of ATP-gated P2X receptors reveals the inhibitory mechanism of a competitive antagonist TNP-ATP). 生物物理 2017.08.01

Works 【 display / non-display

  • CueMol: Molecular Visualization Framework,Software,2000.01 - Now