|
中田 隆夫(ナカタ タカオ) NAKATA Takao
|
経歴(学内) 【 表示 / 非表示 】
-
2008年07月-2018年03月東京医科歯科大学 大学院医歯学総合研究科 医歯学系専攻 生体支持組織学講座 細胞生物学 教授
-
2018年04月-2021年09月東京医科歯科大学 大学院医歯学総合研究科 医歯学系専攻 生体支持組織学講座 細胞生物学 教授
-
2021年10月-現在東京医科歯科大学 大学院医歯学総合研究科 医歯学系専攻 生体支持組織学講座 細胞生物学 教授
経歴(学外) 【 表示 / 非表示 】
-
1987年06月-1988年03月東京大学 医学部附属病院(神経内科) 医員(医病)
-
1989年05月-1993年08月東京大学 医学部解剖学教室 助手
-
1993年08月-1995年06月東京大学 医学部解剖学教室 講師
-
1993年08月-1995年06月東京大学 理学部・教育学部 非常勤講師
-
1995年07月-2008年06月東京大学 医学部解剖学教室 助教授
委員歴 【 表示 / 非表示 】
-
1993年-1998年Cell Structure and Function Assistant Editor
-
1999年日本神経科学会 情報化推進委員
-
2000年-2004年日本学術振興会 学術参与
-
2011年06月日本医学会 第28回日本医学会総会 展示委員
-
2013年-2017年03月順天堂大学 基礎研究医養成プログラム 外部評価委員
-
2014年01月-2014年02月群馬大学 卒前・卒後一貫MD-PhDコース 外部評価委員
-
2017年02月-2018年07月日本神経科学会 第41回日本神経科学大会 プログラム委員
-
2018年03月日本解剖学会 第123回日本解剖学会総会・全国学術集会 講師
研究テーマ 【 表示 / 非表示 】
競争的資金等の研究課題 【 表示 / 非表示 】
-
「光」で骨を造る:革新的な骨再生療法の創出
文部科学省/日本学術振興会 : 2019年 - 2021年
-
近赤外光に応答する光遺伝学ツールの開発
文部科学省/日本学術振興会 : 2018年 - 2020年
-
RAC1光スイッチによるアクチン重合・分岐の急速凍結クライオ電子線トモグラフィー
文部科学省/日本学術振興会 : 2018年 - 2019年
-
マウスにおける機能的嗅覚神経ネットワークの同定
文部科学省/日本学術振興会 : 2015年 - 2017年
-
多機能分子の細胞内活性の統合と制御ーPI3Kの光操作を用いた研究
文部科学省/日本学術振興会 : 2013年 - 2015年
-
細胞内シグナルの光操作と改良型FRETプローベによる生体内生化学
文部科学省/日本学術振興会 : 2013年 - 2014年
-
多機能分子の細胞内活性の統合と制御ーPI3Kの光操作を用いた研究
文部科学省/日本学術振興会
-
新規光遺伝学ツールを用いた破骨細胞分化メカニズムの解明
文部科学省/日本学術振興会
-
クローススケール細胞内分子構造動態解析が解明する細胞骨格ネットワーク構築とその破綻
文部科学省/日本学術振興会
-
クロススケール細胞内分子構造動態解析が解明する細胞骨格ネットワーク構築とその破綻
文部科学省/日本学術振興会
論文・総説 【 表示 / 非表示 】
-
Aiko Takada, Toshifumi Asano, Ken-Ichi Nakahama, Takashi Ono, Takao Nakata, Tomohiro Ishii. Development of an optogenetics tool, Opto-RANK, for control of osteoclast differentiation using blue light. Sci Rep. 2024.01; 14 (1): 1749. ( PubMed, DOI )
-
Toshifumi Asano, Philipp Sasse, Takao Nakata. Development of a Cre-recombination-based color-switching reporter system for cell fusion detection. Biochem Biophys Res Commun. 2024.01; 690 149231. ( PubMed, DOI )
-
Tomoya Uchimura, Toshifumi Asano, Takao Nakata, Akitsu Hotta, Hidetoshi Sakurai. A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs. Cell Reports Medicine. 2021.06; 2 (6): 100298. ( PubMed, DOI )
-
Hironori Inaba, Qianqian Miao, Takao Nakata. Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling. J Biol Chem. 2021.01; 100290. ( PubMed, DOI )
-
Shimizu T, Nakamura T, Inaba H, Iwasa H, Maruyama J, Arimoto-Matsuzaki K, Nakata T, Nishina H, Hata Y. The RAS-interacting chaperone UNC119 drives the RASSF6-MDM2-p53 axis and antagonizes RAS-mediated malignant transformation. The Journal of biological chemistry. 2020.06; ( PubMed, DOI )
-
Moe Sato, Toshifumi Asano, Jun Hosomichi, Takashi Ono, Takao Nakata. Optogenetic manipulation of intracellular calcium by BACCS promotes differentiation of MC3T3-E1 cells. Biochem. Biophys. Res. Commun.. 2018.10; ( PubMed, DOI )
-
Tomohiro Ishii, Koji Sato, Toshiyuki Kakumoto, Shigenori Miura, Kazushige Touhara, Shoji Takeuchi, Takao Nakata. Light generation of intracellular Ca(2+) signals by a genetically encoded protein BACCS. Nat Commun. 2015; 6 8021. ( PubMed, DOI )
-
Toshiyuki Kakumoto, Takao Nakata. Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis. PLoS ONE. 2013; 8 (8): e70861. ( PubMed, DOI )
-
Takao Nakata, Shinsuke Niwa, Yasushi Okada, Franck Perez, Nobutaka Hirokawa. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. J. Cell Biol.. 2011.07; 194 (2): 245-255. ( PubMed, DOI )
-
Takao Nakata, Nobutaka Hirokawa. Neuronal polarity and the kinesin superfamily proteins. Sci. STKE. 2007.02; 2007 (372): pe6. ( PubMed, DOI )
-
Junlin Teng, Tatemitsu Rai, Yosuke Tanaka, Yosuke Takei, Takao Nakata, Motoyuki Hirasawa, Ashok B Kulkarni, Nobutaka Hirokawa. The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nat. Cell Biol.. 2005.05; 7 (5): 474-482. ( PubMed, DOI )
-
Takao Nakata, Nobutaka Hirokawa. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol.. 2003.09; 162 (6): 1045-1055. ( PubMed, DOI )
-
Noriko Homma, Yosuke Takei, Yosuke Tanaka, Takao Nakata, Sumio Terada, Masahide Kikkawa, Yasuko Noda, Nobutaka Hirokawa. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell. 2003.07; 114 (2): 229-239. ( PubMed )
-
Ying Xu, Sen Takeda, Takao Nakata, Yasuko Noda, Yosuke Tanaka, Nobutaka Hirokawa. Role of KIFC3 motor protein in Golgi positioning and integration. J. Cell Biol.. 2002.07; 158 (2): 293-303. ( PubMed, DOI )
-
Kazuo Nakajima, Yosuke Takei, Yosuke Tanaka, Terunaga Nakagawa, Takao Nakata, Yasuko Noda, Mitsutoshi Setou, Nobutaka Hirokawa. Molecular motor KIF1C is not essential for mouse survival and motor-dependent retrograde Golgi apparatus-to-endoplasmic reticulum transport. Mol. Cell. Biol.. 2002.02; 22 (3): 866-873. ( PubMed )
-
J Teng, Y Takei, A Harada, T Nakata, J Chen, N Hirokawa. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J. Cell Biol.. 2001.10; 155 (1): 65-76. ( PubMed, DOI )
-
C Zhao, J Takita, Y Tanaka, M Setou, T Nakagawa, S Takeda, H W Yang, S Terada, T Nakata, Y Takei, M Saito, S Tsuji, Y Hayashi, N Hirokawa. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 2001.06; 105 (5): 587-597. ( PubMed )
-
J Chen, T Nakata, Z Zhang, N Hirokawa. The C-terminal tail domain of neurofilament protein-H (NF-H) forms the crossbridges and regulates neurofilament bundle formation. J. Cell. Sci.. 2000.11; 113 Pt 21 3861-3869. ( PubMed )
-
T Nakata, S Terada, N Hirokawa. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol.. 1998.02; 140 (3): 659-674. ( PubMed )
-
K i Nagata, A Puls, C Futter, P Aspenstrom, E Schaefer, T Nakata, N Hirokawa, A Hall. The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. EMBO J.. 1998.01; 17 (1): 149-158. ( PubMed, DOI )
-
H Yamazaki, T Nakata, Y Okada, N Hirokawa. Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc. Natl. Acad. Sci. U.S.A.. 1996.08; 93 (16): 8443-8448. ( PubMed )
-
S Terada, T Nakata, A C Peterson, N Hirokawa. Visualization of slow axonal transport in vivo. Science. 1996.08; 273 (5276): 784-788. ( PubMed )
-
R Takemura, T Nakata, Y Okada, H Yamazaki, Z Zhang, N Hirokawa. mRNA expression of KIF1A, KIF1B, KIF2, KIF3A, KIF3B, KIF4, KIF5, and cytoplasmic dynein during axonal regeneration. J. Neurosci.. 1996.01; 16 (1): 31-35. ( PubMed )
-
T Nakata, N Hirokawa. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J. Cell Biol.. 1995.11; 131 (4): 1039-1053. ( PubMed )
-
H Yamazaki, T Nakata, Y Okada, N Hirokawa. KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J. Cell Biol.. 1995.09; 130 (6): 1387-1399. ( PubMed )
-
M Kikkawa, T Ishikawa, T Nakata, T Wakabayashi, N Hirokawa. Direct visualization of the microtubule lattice seam both in vitro and in vivo. J. Cell Biol.. 1994.12; 127 (6 Pt 2): 1965-1971. ( PubMed )
-
T Hayashi, F Soulie, T Nakata, N Hirokawa. Redistribution of synapsin I and synaptophysin in response to electrical stimulation in the rat neurohypophysial nerve endings. Cell Struct. Funct.. 1994.08; 19 (4): 253-262. ( PubMed )
-
A Ando, K Yonezawa, I Gout, T Nakata, H Ueda, K Hara, Y Kitamura, Y Noda, T Takenawa, N Hirokawa. A complex of GRB2-dynamin binds to tyrosine-phosphorylated insulin receptor substrate-1 after insulin treatment. EMBO J.. 1994.07; 13 (13): 3033-3038. ( PubMed )
-
S Kondo, R Sato-Yoshitake, Y Noda, H Aizawa, T Nakata, Y Matsuura, N Hirokawa. KIF3A is a new microtubule-based anterograde motor in the nerve axon. J. Cell Biol.. 1994.06; 125 (5): 1095-1107. ( PubMed )
-
H Miki, K Miura, K Matuoka, T Nakata, N Hirokawa, S Orita, K Kaibuchi, Y Takai, T Takenawa. Association of Ash/Grb-2 with dynamin through the Src homology 3 domain. J. Biol. Chem.. 1994.02; 269 (8): 5489-5492. ( PubMed )
-
T Nakata, R Sato-Yoshitake, Y Okada, Y Noda, N Hirokawa. Thermal drift is enough to drive a single microtubule along its axis even in the absence of motor proteins. Biophys. J.. 1993.12; 65 (6): 2504-2510. ( PubMed, DOI )
-
Z Zhang, Y Tanaka, S Nonaka, H Aizawa, H Kawasaki, T Nakata, N Hirokawa. The primary structure of rat brain (cytoplasmic) dynein heavy chain, a cytoplasmic motor enzyme. Proc. Natl. Acad. Sci. U.S.A.. 1993.09; 90 (17): 7928-7932. ( PubMed )
-
Y Noda, T Nakata, N Hirokawa. Localization of dynamin: widespread distribution in mature neurons and association with membranous organelles. Neuroscience. 1993.07; 55 (1): 113-127. ( PubMed )
-
T Nakata, R Takemura, N Hirokawa. A novel member of the dynamin family of GTP-binding proteins is expressed specifically in the testis. J. Cell. Sci.. 1993.05; 105 ( Pt 1) 1-5. ( PubMed )
-
T. Nakata and N. Hirokawa. . Is dynamin GTPase a microtubule based motor? Neuronal Cytoskeleton. 1993; 285-303.
-
Y Tanaka, K Kawahata, T Nakata, N Hirokawa. Chronological expression of microtubule-associated proteins (MAPs) in EC cell P19 after neuronal induction by retinoic acid. Brain Res.. 1992.11; 596 (1-2): 269-278. ( PubMed )
-
K Maeda, T Nakata, Y Noda, R Sato-Yoshitake, N Hirokawa. Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin. Mol. Biol. Cell. 1992.10; 3 (10): 1181-1194. ( PubMed )
-
T Nakata, N Hirokawa. Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy. J. Neurosci.. 1992.06; 12 (6): 2186-2197. ( PubMed )
-
T Nakata, A Iwamoto, Y Noda, R Takemura, H Yoshikura, N Hirokawa. Predominant and developmentally regulated expression of dynamin in neurons. Neuron. 1991.09; 7 (3): 461-469. ( PubMed )
-
T Nakata, K Sobue, N Hirokawa. Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry. J. Cell Biol.. 1990.01; 110 (1): 13-25. ( PubMed )
-
T Nakata, N Hirokawa. Cytoskeletal reorganization of human platelets after stimulation revealed by the quick-freeze deep-etch technique. J. Cell Biol.. 1987.10; 105 (4): 1771-1780. ( PubMed )
-
稲葉 弘哲, 中田 隆夫. 低分子量Gタンパク質の光遺伝学による操作と細胞内機能の観察 顕微鏡. 2021.08; 56 (2): 59-63. ( DOI )
-
石井 智浩, 中田 隆夫. 光スイッチによる細胞内Ca2+シグナル制御 実験医学. 2016.03; 34 (4): 601-606.
-
中田隆夫. シグナル分子の光制御技術と神経の形態形成 ブレインサイエンス・レビュー2011(伊藤正男・川合述史編). 2011.03; 23-36.
-
中田隆夫 . 東京医科歯科大学の教授就任にあたって 解剖学雑誌 vol.84;26-27,2009. 2009; 84 26-27.
-
中田隆夫. 細胞内膜動態に関わる細胞骨格蛋白質について 解剖学雑誌. 1998.04; 73 (2): 107-110.
講演・口頭発表等 【 表示 / 非表示 】
-
稲葉弘哲, 缪倩倩, 中田隆夫. 低分子量Gタンパク質の光遺伝学的制御により明らかとなったRhoAによる細胞内カルシウムシグナル制 御. 第126回日本解剖学会総会・全国学術集会 / 第98回日本生理学会大会 合同大会 2021.03.29 オンライン
-
Hironori Inaba, Qianqian Miao, Takao Nakata. Optogenetic control of small GTPases reveals RhoA-mediated intracellular calcium signaling. Cell Bio Virtual 2020 - An Online ASCB/EMBO Meeting 2020.12.14 Online
-
稲葉弘哲, 中田隆夫. 光遺伝学を使ったRhoAによる細胞内カルシウムシグナル制御の解析. 第19回日本蛋白質科学会年会・第71回日本細胞生物学会大会 合同年次大会 2019.06.25
-
Takao Nakata. Optogenetic study of cell polarity - a simple assay. The 9th Federation of Asian and Oceanian Physiological Societies Congress (FAOPS2019) 2019.03.31 Kobe Convention Center
-
Takao Nakata. Optogenetics of Signaling Proteins in Neurons. The 41st Annual Meeting of the Japan Neuroscience Society 2018.07.27 Kobe Convention Center
-
浅野豪文, 中田隆夫. 筋細胞分化の活動依存的な調節機構. 2017年度生命科学系学会合同年次大会(ConBio2017) 2017.12.06 神戸ポートアイランド
-
Takao Nakata. Optogenetics of cell signaling-Ca2+, cAMP, RhoGTPases, PI3K, what we can say with these tools?. 8th Asia and Oceania Conference of Photobiology (AOCP 2017) 2017.11.15 Seoul, Korea
-
Tomohiro Ishii, Takao Nakata. Optical control of Ca2+ signaling by a synthetic protein BACCS. International and Interdisciplinary Symposium 2016 "Towards a New Era of Cardiovascular Research" 2016.07.13 Tokyo Medical and Dental University, Tokyo
-
角元利行,中田隆夫. 光遺伝学的制御により明らかにされた、神経細胞におけるPIP3シグナルの2つの緩衝機構. Neuro2013 2013.06.02 京都
-
T.Nakata, S.Niwa, Y,Okada, F,Perez, N.Hirokawa. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport.. The American Society for Cell Biology 2011 Annual Meeting 2011.12.06 Denver, Colorado, USA,
-
高田愛子, 石井智浩, 中浜健一, 浅野豪文, 小野卓志, 中田隆夫. オプトジェネティクスを用いた破骨細胞分化の光制御. 第75回日本細胞生物学会大会 2023.06.30 奈良県コンベンションセンター
-
浅野豪文, 中田隆夫. 筋管形成過程の可視化と細胞内カルシウムシグナルの制御. 第22回日本再生医療学会総会 2023.03.24 国立京都国際会館
-
Li Kun, 浅野 豪文, 中田 隆夫. カルシウム変動による骨格筋芽細胞融合の光遺伝学を用いた解析. 第128 回日本解剖学会総会・全国学術集会 2023.03.18 東北大学
-
稲葉弘哲, 石井智浩, 浅野豪文, 中村里子, 後藤英仁, 中田隆夫. 組織バーチャルスライドを用いた画像分類AI作製グループワークの試み. 第127回日本解剖学会総会・全国学術集会 2022.03.26 オンライン
-
石井智浩, 稲葉弘哲, 浅野豪文, 中村里子, 中田隆夫. オンライン標本を用いた組織学教育. 第127回日本解剖学会総会・全国学術集会 2022.03.26 オンライン
-
缪倩倩, 稲葉弘哲, 中田隆夫. 光遺伝学によるRhoA/Rac1クロストークの時空間解析. 第127回日本解剖学会総会・全国学術集会 2022.03.25 オンライン
-
稲葉弘哲, 今崎剛, 青山一弘, 高崎寛子, 加藤貴之, 光岡薫, 仁田亮, 中田隆夫 . Cryo-electron tomogprahy of the actin cytoskelton in optogenetically induced lamellipodia. 学術変革領域(A)クロススケール新生物学 キックオフミーティング 2021.12.13 長良川国際会議場
-
稲葉弘哲, 中田隆夫. 光遺伝学を用いた低分子量Gタンパク質によるPLCε活性制御機構の解析. 第72回日本細胞生物学会大会 2020.06 オンライン
-
浅野 豪文, 中田 隆夫. 骨格筋芽細胞における細胞内カルシウムの特異的操作. 第19回日本再生医療学会総会 2020.05.18 オンライン
-
石井智浩, Xiyin Deng, 中田隆夫. 光遺伝学ツールの開発と細胞の分化誘導. 第125回日本解剖学会総会・全国学術集会 2020.03.25 ANAクラウンプラザホテル宇部(山口)
-
佐藤 萌,浅野 豪文,細道 純,小野 卓史,中田 隆夫. 光遺伝学ツールBACCSを用いた骨芽細胞分化メカニズムの制御. 第124 回日本解剖学会総会・全国学術集会 2019.03.29 朱鷺メッセ 新潟コンベンションセンター
-
宮本孝則, 浅野 豪文, 中田 隆夫. 細胞活動依存的な神経筋接合部形成の検討. 第124 回日本解剖学会総会・全国学術集会 2019.03.27 朱鷺メッセ 新潟コンベンションセンター
-
佐藤萌, 浅野豪文, 細道純, 石田雄之, 臼見莉沙, 清水康広, 金香佐和, 中田隆夫, 小野卓史. 光遺伝学を用いた骨芽細胞分化メカニズムの解明と制御. 第77回日本矯正歯科学会大会 2018.11.01 横浜市
-
青木 結香, 浅野 豪文, 中田 隆夫. 神経筋接合部形成における神経細胞活動依存性の検討. 第123回日本解剖学会総会・学術集会 2018.03.28 日本医科大学武蔵境校舎・日本獣医生命科学大学
-
中田隆夫. 光遺伝学ツールを使ってできること CDC42とRAC1の機能の違いについて. 第122回日本解剖学会総会・全国学術集会 2017.03.28 長崎大学 坂本キャンパス
-
浅野豪文, 中田隆夫. 細胞活動の動的光制御による筋分化調節. 第16回日本再生医療学会総会 2017.03.07 仙台国際センター
-
石井智浩、佐藤幸治、中田隆夫. 細胞内カルシウムシグナルの光遺伝学ツールBACCS. 第8回光操作研究会 2016.09.29 慶応義塾大学・三田キャンパス、東京
-
Tomohiro Ishii, Koji Sato, Toshiyuki Kakumoto, Shigenori Miura, Kazushige Touhara, Shoji Takeuchi, Takao Nakata. Light control of intracellular Ca2+ signals by a genetically encoded protein, BACCS. 第39回日本神経科学大会 2016.07.21 パシフィコ横浜, 横浜
-
石井智浩, 中田隆夫. 細胞内カルシウムシグナルを光によって操作する新規光遺伝学ツールBACCSの開発. 第121回日本解剖学会総会・全国学術集会 2016.03.28 ビックパレットふくしま
-
関詩織,石井智浩,中田隆夫. BACCSによる細胞内Ca2+シグナルの光操作とCa2+濃度変化および細胞事象の同時イメージング. 第121回日本解剖学会総会・全国学術集会 2016.03.28 ビックパレットふくしま
-
石井智浩、佐藤幸治、角元利行、三浦重徳、東原和成、竹内昌治、中田隆夫. 細胞内カルシウムシグナルを光で操作する遺伝学ツールの開発(石井智浩). BMB2015 第38回日本分子生物学会年会 第88回日本生化学会大会 合同大会 2015.12.01 神戸ポートピアアイランド
-
佐藤幸治、石井智浩、竹内昌治、中田隆夫. マウス嗅神経細胞における光活性型カルシウムチャネルの発現. 日本味と匂い学会第49回大会 2015.09.24 じゅうろくプラザ(岐阜)
-
中田隆夫. 光遺伝学を用いた分泌経路の研究(中田隆夫). 第120回日本解剖学会総会・全国学術集会 2015.03.21 神戸
-
中田隆夫. 東京医科歯科大学の取り組み. 第86回日本生化学会大会 フォーラム「基礎医学研究者養成の現状と展望~十年後の基礎医学教育研究指導者を確保するために何をすべきか~」 2013.09.12 横浜
-
角元利行,中田隆夫. 海馬培養神経細胞におけるPIP3の時空間的な観測と光制御. 第118回日本解剖学会総会 2013.03.29 高松
その他業績 【 表示 / 非表示 】
-
Opto-RANK: A light switch for osteoclasts,2024年03月
AAAS EurekAlert! The Global Source for Science News
-
「 光で骨吸収をコントロールする新技術を開発 」 ― 骨疾患の新たな治療法に期待 ―,2024年02月
Scientific Reports