Personnel Information

写真a

NAKATA Takao


Job title

Professor

Laboratory Phone number

+81-3-5803-5140

Mail Address

The inquiry by e-mail is 《here

Homepage URL

http://www.tmd.ac.jp/cbio/english/index.html

Graduate School 【 display / non-display

  • The University of Tokyo, Graduate School, Division of Medicine, Doctor's Course, 1989.05, Unfinished Course

Campus Career 【 display / non-display

  • 2008.07
    -
    2018.03
    Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Medical and Dental Sciences, Bio-Matrix, Cell Biology, Professor
  • 2018.04
    -
    2021.09
    Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Medical and Dental Sciences, Bio-Matrix, Cell Biology, Professor
  • 2021.10
    -
    Now
    Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Medical and Dental Sciences, Bio-Matrix, Cell Biology, Professor

External Career 【 display / non-display

  • 1987.06
    -
    1988.03
    , Senior Resident
  • 1993.08
    -
    1995.06
    , Junior Associate Professor
  • 1993.08
    -
    1995.06
    , Visiting Lecturer

Research Areas 【 display / non-display

  • Anatomy

  • Cell biology

  • Molecular biology

  • Neuroscience-general

Qualification Acquired 【 display / non-display

  • Doctor

 

Published Papers & Misc 【 display / non-display

  1. Aiko Takada, Toshifumi Asano, Ken-Ichi Nakahama, Takashi Ono, Takao Nakata, Tomohiro Ishii. Development of an optogenetics tool, Opto-RANK, for control of osteoclast differentiation using blue light. Sci Rep. 2024.01; 14 (1): 1749. ( PubMed, DOI )

  2. Toshifumi Asano, Philipp Sasse, Takao Nakata. Development of a Cre-recombination-based color-switching reporter system for cell fusion detection. Biochem Biophys Res Commun. 2024.01; 690 149231. ( PubMed, DOI )

  3. Tomoya Uchimura, Toshifumi Asano, Takao Nakata, Akitsu Hotta, Hidetoshi Sakurai. A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs. Cell Reports Medicine. 2021.06; 2 (6): 100298. ( PubMed, DOI )

  4. Hironori Inaba, Qianqian Miao, Takao Nakata. Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling. J Biol Chem. 2021.01; 100290. ( PubMed, DOI )

  5. Shimizu T, Nakamura T, Inaba H, Iwasa H, Maruyama J, Arimoto-Matsuzaki K, Nakata T, Nishina H, Hata Y. The RAS-interacting chaperone UNC119 drives the RASSF6-MDM2-p53 axis and antagonizes RAS-mediated malignant transformation. The Journal of biological chemistry. 2020.06; ( PubMed, DOI )

  6. Moe Sato, Toshifumi Asano, Jun Hosomichi, Takashi Ono, Takao Nakata. Optogenetic manipulation of intracellular calcium by BACCS promotes differentiation of MC3T3-E1 cells. Biochem. Biophys. Res. Commun.. 2018.10; ( PubMed, DOI )

  7. Tomohiro Ishii, Koji Sato, Toshiyuki Kakumoto, Shigenori Miura, Kazushige Touhara, Shoji Takeuchi, Takao Nakata. Light generation of intracellular Ca(2+) signals by a genetically encoded protein BACCS. Nat Commun. 2015; 6 8021. ( PubMed, DOI )

  8. Toshiyuki Kakumoto, Takao Nakata. Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis. PLoS ONE. 2013; 8 (8): e70861. ( PubMed, DOI )

  9. Takao Nakata, Shinsuke Niwa, Yasushi Okada, Franck Perez, Nobutaka Hirokawa. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. J. Cell Biol.. 2011.07; 194 (2): 245-255. ( PubMed, DOI )

  10. Takao Nakata, Nobutaka Hirokawa. Neuronal polarity and the kinesin superfamily proteins. Sci. STKE. 2007.02; 2007 (372): pe6. ( PubMed, DOI )

  11. Junlin Teng, Tatemitsu Rai, Yosuke Tanaka, Yosuke Takei, Takao Nakata, Motoyuki Hirasawa, Ashok B Kulkarni, Nobutaka Hirokawa. The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nat. Cell Biol.. 2005.05; 7 (5): 474-482. ( PubMed, DOI )

  12. Takao Nakata, Nobutaka Hirokawa. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol.. 2003.09; 162 (6): 1045-1055. ( PubMed, DOI )

  13. Noriko Homma, Yosuke Takei, Yosuke Tanaka, Takao Nakata, Sumio Terada, Masahide Kikkawa, Yasuko Noda, Nobutaka Hirokawa. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell. 2003.07; 114 (2): 229-239. ( PubMed )

  14. Ying Xu, Sen Takeda, Takao Nakata, Yasuko Noda, Yosuke Tanaka, Nobutaka Hirokawa. Role of KIFC3 motor protein in Golgi positioning and integration. J. Cell Biol.. 2002.07; 158 (2): 293-303. ( PubMed, DOI )

  15. Kazuo Nakajima, Yosuke Takei, Yosuke Tanaka, Terunaga Nakagawa, Takao Nakata, Yasuko Noda, Mitsutoshi Setou, Nobutaka Hirokawa. Molecular motor KIF1C is not essential for mouse survival and motor-dependent retrograde Golgi apparatus-to-endoplasmic reticulum transport. Mol. Cell. Biol.. 2002.02; 22 (3): 866-873. ( PubMed )

  16. J Teng, Y Takei, A Harada, T Nakata, J Chen, N Hirokawa. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J. Cell Biol.. 2001.10; 155 (1): 65-76. ( PubMed, DOI )

  17. C Zhao, J Takita, Y Tanaka, M Setou, T Nakagawa, S Takeda, H W Yang, S Terada, T Nakata, Y Takei, M Saito, S Tsuji, Y Hayashi, N Hirokawa. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 2001.06; 105 (5): 587-597. ( PubMed )

  18. J Chen, T Nakata, Z Zhang, N Hirokawa. The C-terminal tail domain of neurofilament protein-H (NF-H) forms the crossbridges and regulates neurofilament bundle formation. J. Cell. Sci.. 2000.11; 113 Pt 21 3861-3869. ( PubMed )

  19. T Nakata, S Terada, N Hirokawa. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol.. 1998.02; 140 (3): 659-674. ( PubMed )

  20. K i Nagata, A Puls, C Futter, P Aspenstrom, E Schaefer, T Nakata, N Hirokawa, A Hall. The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. EMBO J.. 1998.01; 17 (1): 149-158. ( PubMed, DOI )

  21. H Yamazaki, T Nakata, Y Okada, N Hirokawa. Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc. Natl. Acad. Sci. U.S.A.. 1996.08; 93 (16): 8443-8448. ( PubMed )

  22. S Terada, T Nakata, A C Peterson, N Hirokawa. Visualization of slow axonal transport in vivo. Science. 1996.08; 273 (5276): 784-788. ( PubMed )

  23. R Takemura, T Nakata, Y Okada, H Yamazaki, Z Zhang, N Hirokawa. mRNA expression of KIF1A, KIF1B, KIF2, KIF3A, KIF3B, KIF4, KIF5, and cytoplasmic dynein during axonal regeneration. J. Neurosci.. 1996.01; 16 (1): 31-35. ( PubMed )

  24. T Nakata, N Hirokawa. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J. Cell Biol.. 1995.11; 131 (4): 1039-1053. ( PubMed )

  25. H Yamazaki, T Nakata, Y Okada, N Hirokawa. KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J. Cell Biol.. 1995.09; 130 (6): 1387-1399. ( PubMed )

  26. M Kikkawa, T Ishikawa, T Nakata, T Wakabayashi, N Hirokawa. Direct visualization of the microtubule lattice seam both in vitro and in vivo. J. Cell Biol.. 1994.12; 127 (6 Pt 2): 1965-1971. ( PubMed )

  27. T Hayashi, F Soulie, T Nakata, N Hirokawa. Redistribution of synapsin I and synaptophysin in response to electrical stimulation in the rat neurohypophysial nerve endings. Cell Struct. Funct.. 1994.08; 19 (4): 253-262. ( PubMed )

  28. A Ando, K Yonezawa, I Gout, T Nakata, H Ueda, K Hara, Y Kitamura, Y Noda, T Takenawa, N Hirokawa. A complex of GRB2-dynamin binds to tyrosine-phosphorylated insulin receptor substrate-1 after insulin treatment. EMBO J.. 1994.07; 13 (13): 3033-3038. ( PubMed )

  29. S Kondo, R Sato-Yoshitake, Y Noda, H Aizawa, T Nakata, Y Matsuura, N Hirokawa. KIF3A is a new microtubule-based anterograde motor in the nerve axon. J. Cell Biol.. 1994.06; 125 (5): 1095-1107. ( PubMed )

  30. H Miki, K Miura, K Matuoka, T Nakata, N Hirokawa, S Orita, K Kaibuchi, Y Takai, T Takenawa. Association of Ash/Grb-2 with dynamin through the Src homology 3 domain. J. Biol. Chem.. 1994.02; 269 (8): 5489-5492. ( PubMed )

  31. T Nakata, R Sato-Yoshitake, Y Okada, Y Noda, N Hirokawa. Thermal drift is enough to drive a single microtubule along its axis even in the absence of motor proteins. Biophys. J.. 1993.12; 65 (6): 2504-2510. ( PubMed, DOI )

  32. Z Zhang, Y Tanaka, S Nonaka, H Aizawa, H Kawasaki, T Nakata, N Hirokawa. The primary structure of rat brain (cytoplasmic) dynein heavy chain, a cytoplasmic motor enzyme. Proc. Natl. Acad. Sci. U.S.A.. 1993.09; 90 (17): 7928-7932. ( PubMed )

  33. Y Noda, T Nakata, N Hirokawa. Localization of dynamin: widespread distribution in mature neurons and association with membranous organelles. Neuroscience. 1993.07; 55 (1): 113-127. ( PubMed )

  34. T Nakata, R Takemura, N Hirokawa. A novel member of the dynamin family of GTP-binding proteins is expressed specifically in the testis. J. Cell. Sci.. 1993.05; 105 ( Pt 1) 1-5. ( PubMed )

  35. T. Nakata and N. Hirokawa. . Is dynamin GTPase a microtubule based motor? Neuronal Cytoskeleton. 1993; 285-303.

  36. Y Tanaka, K Kawahata, T Nakata, N Hirokawa. Chronological expression of microtubule-associated proteins (MAPs) in EC cell P19 after neuronal induction by retinoic acid. Brain Res.. 1992.11; 596 (1-2): 269-278. ( PubMed )

  37. K Maeda, T Nakata, Y Noda, R Sato-Yoshitake, N Hirokawa. Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin. Mol. Biol. Cell. 1992.10; 3 (10): 1181-1194. ( PubMed )

  38. T Nakata, N Hirokawa. Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy. J. Neurosci.. 1992.06; 12 (6): 2186-2197. ( PubMed )

  39. T Nakata, A Iwamoto, Y Noda, R Takemura, H Yoshikura, N Hirokawa. Predominant and developmentally regulated expression of dynamin in neurons. Neuron. 1991.09; 7 (3): 461-469. ( PubMed )

  40. T Nakata, K Sobue, N Hirokawa. Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry. J. Cell Biol.. 1990.01; 110 (1): 13-25. ( PubMed )

  41. T Nakata, N Hirokawa. Cytoskeletal reorganization of human platelets after stimulation revealed by the quick-freeze deep-etch technique. J. Cell Biol.. 1987.10; 105 (4): 1771-1780. ( PubMed )

▼display all

Conference Activities & Talks 【 display / non-display

  1. 稲葉弘哲, 缪倩倩, 中田隆夫. 低分子量Gタンパク質の光遺伝学的制御により明らかとなったRhoAによる細胞内カルシウムシグナル制 御. 第126回日本解剖学会総会・全国学術集会 / 第98回日本生理学会大会 合同大会 2021.03.29 オンライン

  2. Hironori Inaba, Qianqian Miao, Takao Nakata. Optogenetic control of small GTPases reveals RhoA-mediated intracellular calcium signaling. Cell Bio Virtual 2020 - An Online ASCB/EMBO Meeting 2020.12.14 Online

  3. 稲葉弘哲, 中田隆夫. 光遺伝学を使ったRhoAによる細胞内カルシウムシグナル制御の解析. 第19回日本蛋白質科学会年会・第71回日本細胞生物学会大会 合同年次大会 2019.06.25

  4. Takao Nakata. Optogenetic study of cell polarity - a simple assay. The 9th Federation of Asian and Oceanian Physiological Societies Congress (FAOPS2019) 2019.03.31 Kobe Convention Center

  5. Takao Nakata. Optogenetics of Signaling Proteins in Neurons. The 41st Annual Meeting of the Japan Neuroscience Society 2018.07.27 Kobe Convention Center

  6. 浅野豪文, 中田隆夫. 筋細胞分化の活動依存的な調節機構. 2017年度生命科学系学会合同年次大会(ConBio2017) 2017.12.06 神戸ポートアイランド

  7. Takao Nakata. Optogenetics of cell signaling-Ca2+, cAMP, RhoGTPases, PI3K, what we can say with these tools?. 8th Asia and Oceania Conference of Photobiology (AOCP 2017) 2017.11.15 Seoul, Korea

  8. Tomohiro Ishii, Takao Nakata. Optical control of Ca2+ signaling by a synthetic protein BACCS. International and Interdisciplinary Symposium 2016 "Towards a New Era of Cardiovascular Research" 2016.07.13 Tokyo Medical and Dental University, Tokyo

  9. 角元利行,中田隆夫. 光遺伝学的制御により明らかにされた、神経細胞におけるPIP3シグナルの2つの緩衝機構. Neuro2013 2013.06.02 京都

  10. T.Nakata, S.Niwa, Y,Okada, F,Perez, N.Hirokawa. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport.. The American Society for Cell Biology 2011 Annual Meeting 2011.12.06 Denver, Colorado, USA,

▼display all

Others 【 display / non-display

  • Opto-RANK: A light switch for osteoclasts,2024.03

 

Campus class subject 【 display / non-display

  • Histology,2008 - Now

  • Cell Biology,2013 - Now