基本情報

写真a

鈴木 博視(スズキ ヒロシ)

SUZUKI Hiroshi


職名

特任准教授

経歴(学内) 【 表示 / 非表示

  • 2020年04月
    -
    2022年04月
    東京医科歯科大学 高等研究院 卓越研究部門 准教授
  • 2022年05月
    -
    2022年06月
    東京医科歯科大学 高等研究院 卓越研究部門 特任准教授
  • 2022年07月
    -
    現在
    東京医科歯科大学 高等研究院 卓越研究部門 細胞構造生理学研究室 特任准教授
 

競争的資金等の研究課題 【 表示 / 非表示

  • 一回膜貫通型蛋白質プレキシンによるシグナル伝達機構の構造学的解明

    文部科学省/日本学術振興会

  • 一回膜貫通型蛋白質プレキシンの動的な構造変化による活性化機構の解明

    文部科学省/日本学術振興会

論文・総説 【 表示 / 非表示

  1. Shota Suzuki, Kotaro Tanaka, Kouki Nishikawa, Hiroshi Suzuki, Atsunori Oshima, Yoshinori Fujiyoshi. Structural basis of hydroxycarboxylic acid receptor signaling mechanisms through ligand binding. Nat Commun. 2023.09; 14 (1): 5899. ( PubMed, DOI )

  2. Akiko Kamegawa, Shota Suzuki, Hiroshi Suzuki, Kouki Nishikawa, Nobutaka Numoto, Yoshinori Fujiyoshi. Structural analysis of the water channel AQP2 by single-particle cryo-EM. J Struct Biol. 2023.09; 215 (3): 107984. ( PubMed, DOI )

  3. Shunsuke Imai, Hiroshi Suzuki, Yoshinori Fujiyoshi, Ichio Shimada. Dynamically regulated two-site interaction of viral RNA to capture host translation initiation factor. Nat Commun. 2023.08; 14 (1): 4977. ( PubMed, DOI )

  4. A Structural Model of the Endogenous Human BAF Complex Informs Disease Mechanisms 2020.10; 183 (3): 802-817.e24. ( DOI )

  5. New approach for membrane protein reconstitution into peptidiscs and basis for their adaptability to different proteins. 2020.03; 9 ( PubMed, DOI )

  6. Morphologic determinant of tight junctions revealed by claudin-3 structures. 2019.02; 10 (1): 816. ( PubMed, DOI )

  7. Structural Insights into Mdn1, an Essential AAA Protein Required for Ribosome Biogenesis. 2018.10; 175 (3): 822-834. ( PubMed, DOI )

  8. Crystal structures of the gastric proton pump. 2018.04; 556 (7700): 214-218. ( PubMed, DOI )

  9. The cryo-EM structure of gastric H+,K+-ATPase with bound BYK99, a high-affinity member of K+-competitive, imidazo[1,2-a]pyridine inhibitors. 2017.07; 7 (1): 6632. ( PubMed, DOI )

  10. Crystal structures of claudins: insights into their intermolecular interactions. 2017.06; 1397 (1): 25-34. ( PubMed, DOI )

  11. Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. 2015.02; 347 (6223): 775-8. ( PubMed, DOI )

  12. Model for the architecture of claudin-based paracellular ion channels through tight junctions. 2015.01; 427 (2): 291-7. ( PubMed, DOI )

  13. Crystal structure of a claudin provides insight into the architecture of tight junctions. 2014.04; 344 (6181): 304-7. ( PubMed, DOI )

  14. Electron Crystallography of Euglenoid Four-Transmembrane Protein Revealed the Linear Polymerization by a Combination of Three-Ways of Intermolecular Interaction 2013.01; 104 (2): 42A.

  15. H. Suzuki, Y. Ito, Y. Yamazaki, K. Mineta, M. Uji, K. Abe, K. Tani, Y. Fujiyoshi, S. Tsukita. Strand formation by a trimeric unit repeat of four-transmembrane proteins in Euglena Nat. Commun. 2013; 4 ( DOI )

  16. The four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat. 2013; 4 1766. ( PubMed, DOI )

  17. Structure and inhibitor of water channel in brain 2010.11; 179-204. ( DOI )

  18. Influence of the cytoplasmic domains of aquaporin-4 on water conduction and array formation. 2010.10; 402 (4): 669-81. ( PubMed, DOI )

  19. Formation of aquaporin-4 arrays is inhibited by palmitoylation of N-terminal cysteine residues. 2008.04; 1778 (4): 1181-9. ( PubMed, DOI )

  20. Assembly of Aquaporin-4 into square arrays is restricted by palmitoylation of N-terminal cysteine residues 2008; 61 S148.

  21. Implications of the aquaporin-4 structure on array formation and cell adhesion. 2006.01; 355 (4): 628-39. ( PubMed )

  22. Structural asymmetry governs the assembly and GTPase activity of McrBC restriction complexes 2020.12; ( DOI )

▼全件表示

講演・口頭発表等 【 表示 / 非表示

  1. 鈴木博視, 今井駿輔, 藤吉好則, 嶋田一夫. 脳心筋炎ウイルスIRES RNAと翻訳開始因子eIF4G-eIF4Aとの複合体構造解析. 第45回日本分子生物学会年会 2022.11.30

その他業績 【 表示 / 非表示

  • 脳心筋炎ウイルスはRNAの動的構造平衡を利用して増える -NMRとクライオ電子顕微鏡の連携による構造生物学の新展開-,2023年08月